Preparation and Characterization of the Dichloro bis-(2-Pentyne) Complex [WCl₂(CO)(NCMe)(η²-EtC₂Me)₂] ### MUTLAQ AL-JAHDALI King Abdulaziz University, Science Faculty, Chemistry Department P.O.Box 80203, Jeddah 21589, Kingdom of Saudi Arabia E-mail: mutlaqaljahdali@hotmail.com Preparation of $[WCl_2(CO)_3(NCMe)_2]$ by reacting of $[Wl_2(CO)_3(NCMe)_2]$ with two equivalents of NaCl in acetone, followed with an excess of EtC_2Me (2-pentyne) in CH_2Cl_2 gives the 2-pentyne complex $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (1). Equimolar quantities of 1 with (L = NPh₃ and PPh₃) react in CH_2Cl_2 to give the acetonitrile replaced products, [WCl₂(CO)(PPh₃) (η^2 -EtC₂Me)₂] (2) and [WCl₂(CO)(NPh₃)(η^2 -EtC₂Me)₂] (3) in good yield. Reaction of 1 with equimolar amount of bidentate of {L₂ = Ph₂P(CH₂)_nPPh₂ (n = 1-5)} in CH₂Cl₂ at room temperature afforded the mono-(2-Pentyne) complexes, [WCl₂(CQ)(Ph₂P(CH₂)_n PPh₂)(η^2 -EtC₂Me)] (n = 1-5) (4-8). Key Words: Preparation, Characterization, Dimeric monoalkyne complex, Tungsten(II). ### INTRODUCTION In 1988 Baker *et al.* reported the synthesis of the dimeric mono-alkyne complexes $[\{M(M-I)I(CO)(NCMe)(\eta^2-RC_2R^1)\}_2]$ (M=Mo, W; $R=R^1=Me$, Ph, CH_2CI ; R=Ph, $R^1=Me$, CH_2OH ; R=Me, $R^1=PhS$, P-tols) and the bis (alkyne) complexes $[\{Mo(M-I)I(CO)(\eta^2-MeC_2Me)_2\}_2]$ and $[MI_2(CO)(NCMe)-(\eta^2-RC_2R^1)_2]$ (M=Mo, W; $R=R^1=Ph$; R=Me, $R^1=Ph$; for M=W only; $R=R^1=Me$, CH_2CI ; P-tol; R=Ph, $R^1=CH_2OH$). An extensive iodoalkyne chemistry of molybdenum(II) and tungsten(II) was developed M=0-M=0. In 1994, Baker *et al.* M=0-M In 2000, the preparation of the seven-coordinate dichloro-complex [WCl₂(CO)₃(NCMe)₂] by the reaction of [WI₂(CO)₃(NCMe)₂] with two equivalents of NaCl in acetone has been reported¹⁸. 1052 Al-Jahdali Asian J. Chem. In 2001, Mutlaq and Baker¹⁹ described the synthesis of [WCl₂(CO)(NCMe)(η^2 -EtC₂Et)₂] by the reaction of [WCl₂(CO)₃(NCMe)₂] with 3-hexyne and also described the above complex with neutral and anionic donor ligands. In this paper, we used same methods to synthesize and characterize the seven-coordinate dichloro-complex [WCl₂(CO)₃(NCMe)₂] with 2-pentyne following the reaction with mono-dentate and bidentate ligands. #### **EXPERIMENTAL** Reagents and general techniques: The starting material [WCl₂(CO)₃. (NCMe)₂] was prepared in situ by reacting [WI₂(CO)₃(NCMe)₂] with two equivalents CH₂Cl₂ in acetone. The reactions were carried out by using standard vacuum/schlenk line techniques. The solvent CH₂Cl₂ was dried over calcium hydride and diethyl ether was dried over sodium wire. All chemicals used were purchased from commercial sources. Elemental analyses (C, H and N) were determined by using a Carlo-Erba elemental analyser MoD 1108 (using helium as the carrier gas). IR spectra were recorded as thin CHCl₃ films on a Perkin-Elmer FT 1600 series IR spectrophotometer. ¹H, ¹³C and ³¹P NMR spectra were recorded on a Bruker AC 250 MHz NMR spectrometer, and spectra were referenced to SiMe₄ for ¹H and ¹³C or 85% H₃PO₄ for ³¹P. Preparation of [WCl₂(CO)(NCMe)(η^2 -EtC2Me)₂] (1): To a stirred solution of [WCl₂(CO)₃(NCMe)₂] {which were prepared in situ by reaction of [WI₂(CO)₃(NCMe)₂] (0.5 g, 0.82 mmol) with two equivalents of NaCl (0.096 g, 1.6 mmol)} (0.5 g, 1.2 mmol) in CH₂Cl₂ (25 cm³) was added excess of EtC₂Me (0.16 g, 0–14 mL, 1.2 mmol). Filtration and removal of solvent in vacuo after 24 h, gave the green oily product of [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)₂] (1), which was recrystallized several times (yield = 0.25 g, 47%). Preparation of $[WCl_2(CO)(PPh_3)(\eta^2-EtC_2Me)_2]$ (2): To a stirred solution of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (1) (0.3 g, 0.65 mmol) in CH_2Cl_2 (20 cm³) was added PPh₃ (0.17 g, 0.65 mmol). Filtration and removal of solvent in vacuo after 24 h, gave the green powder $[WCl_2(CO)(PPh_3)(\eta^2-EtC_2Me)_2]$ (2) (yield of product = 0.15 g, 56%). Similar reaction of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ with one equivalent of NPh₃ in CH₂Cl₂ at room temperature give the complex $[WCl_2(CO)(NPh_3)(\eta^2-EtC_2Me)_2]$ (3) (Table-1). Preparation of [WCl₂(CO)(Ph₂P(CH₂)PPh₂)(η^2 -EtC₂Me)] (4): To a stirred solution of [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)₂] (1) (0.2 g, 0.4 mmol) in CH₂Cl₂ (20 cm²) at room temperature was added Ph₂P(CH₂)PPh₂ (0.16 g, 0.4 mmol). Filtration and removal of solvent *in vacuo* after 24 h gave the green powder [WCl₂(CO){Ph₂P(CH₂)PPh₂}(η^2 -EtC₂Me)] (4) (yield of product = 0.18 g, 60%). Similar reactions of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (1) with one equivalent of $Ph_2P(CH_2)_nPPh_2$ (n = 2-5) in CH_2Cl_2 at room temperature gave the complexes $[WCl_2(CO)(Ph_2P(CH_2)_nPPh_2)(\eta^2-EtC_2Me)]$ (n = 2-5) (5-8) (Table-1). TABLE-I PHYSICAL AND ANALYTICAL DATA FOR THE CHLOROCARBONYL 2-PENTYNE TUNGSTEN COMPLEXES (1–8) | Complex
No. | Complex | Colour
(Yield %) | % Elemental analysis:
Found (Calcd.) | | | |----------------|---|---------------------|---|--------------|-------| | | | (Tield 70) | С | Н | N | | 1 | [WCl ₂ (CO)(NCMe)(η^2 -EtC ₂ Me) ₂] | Green | 35.30 | 3.8 | 2.6 | | | 8 | (47) | (35.6) | (4.0) | (2.9) | | 2 | $[WCl2(CO)(PPh3)(\eta2-EtC2Me)2]$ | Green | 51.0 | 4.1 | | | | | (56) | (51.1) | (4.5) | | | 3 | [WCl ₂ (CO)(NPh ₃)(η^2 -EiC ₂ Me) ₂] | Green | 52.0 | 4.4 | 1.9 | | | | (54) | (52.4) | (4.6) | (2.1) | | 4 | [WCI ₂ (CO)(Ph ₂ P(CH ₂)PPh ₂)(η^2 -EtC ₂ Me)] | Green | 50.2 | 3.9 | 13 15 | | | 2 | (60) | (50.6) | (4.08) | | | .5 | $[WCl2(CO){Ph2P(CH2)2PPh2}(\eta^2-EtC2Me)]$ | Green | 50.9 | 4.3 | | | ~ | 2(1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | (43) | (51.2) | (4.2) | | | 6 | $[WCl2(CO){Ph2P(CH2)3PPh2}(\eta^2-EiC2Me)]$ | Green | 51.6 | 4.2 | | | | [| (56) | (51.9) | (4.4) | | | 7 | $[WCl2(CO){Ph2P(CH2)4PPh2}(\eta^2-EtC2Me)]$ | | | | | | , | [2(-5)[1 1121 (G112)41 1 112][[-21C2[VIE]] | Green
(28) | 52.3
(52.5) | 4.2
(4.6) | | | 8 | IWCL/COVPL P/CH \ PPH \/2 F/C \/ \ | | | | | | 0 | $[WCl2(CO){Ph2P(CH2)5PPH2}(\eta^2-EtC2Me)]$ | Green
(32) | 52.8
(53.1) | 4.6
(4.8) | | ### RESULTS AND DISCUSSION Synthesis and characterization [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)₂] (1): Reaction of [WCl₂(CO)₃(NCMe)₂] (prepared *in situ as* described previously with an excess of 2-pentyne gives the new bis(2-pentyne) complex [WCl₂ (CO)(NCMe)(η^2 -EtC₂Me)₂] (1) which has been characterized by IR (Table-2), ¹H and ¹³C NMR (Tables 3 and 4). Complex 1 is very much less stable than its diiodo analogue $[WI_2(CO)(NCMe)(\eta^2-EtC_2Et)]^{20}$ and $[WCI_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]^{19}$. It was difficult to obtain pure powder even after many attempts, but it can be used for reaction if used very quickly. Complex 1 is also same for solubility of analogue complex of $[WCI_2(CO)(NCMe)(\eta^2-EtC_2Et)_2]^{19}$ but less soluble in chlorinated solvents and diethyl ether and hydrocarbon solvents compared to its diiodo analogue²⁰. The IR spectrum for 1 (CHCl₃) has strong carbonyl band at 2073 cm⁻¹, which is at same number compared to $[WCI_2(CO)(NCMe)(\eta^2-Et_2C_2Et)_2]$ at 2079 cm⁻¹; but at higher wavenumber compared to diiodo of previous complex at 2056 cm⁻¹. TABLE-2 INFRARED DATA^a FOR THE CHLOROCARBONYL 2-PENTYNE TUNGSTEN COMPLEXES (1–8) | Complex No. | $v(C \equiv 0) cm^{-1}$ | $v(C = N) cm^{-1}$ | $v(C = C) cm^{-1}$ | |-------------|-------------------------|--------------------|--------------------| | 1 | 2073 s | 1632 w | 1609 w | | 2 | 2067 s | 1642 w | _ | | 3 | 2075 s | 1603 w | _ | | 4 | 1937 s | 1604 w | _ | | 5 | 1941 s | 1601 w | | | 6 | 1942 s | 1598 w | | | 7 | 1929 s | 1607 w | - | | 8 | 1932 s | 1611 w | _ | | 9 . | 1935 s | 1600 w | _ | ^aspectra recorded in CHCl₃ as thin films between NaCl plates; s = strong, w = weak. TABLE-3 1H NMR DATA FOR THE CHLOROCARBONYL 2-PENTYNE TUNGSTEN COMPLEXES (1–8) | Complex No. | ¹ H NMR (δ) ppm | | | |-------------|--|--|--| | 1 | 3.5 (q, 4H, CH ₂ , 2-Pentyne); 3.2 (s, 6H, CH ₃ , 2-Pentyne); 2.70 (S, 3H, CH ₃ , CN); 1.2 (t, 6H, CH ₃ -CH ₂ , 2-Pentyne) | | | | 2 | 7.8-7.2 (m, '3H, Ph); 3.6-3.2 (mq, 4H, CH ₂ Pentyne); 3.1 (s, 6H, CH ₃ Pentyne); 1.2 (t, 6H, CH ₂ CH ₃ Pentyne) | | | | 3 | 7.3-6.8 (m, 15H, Ph); 3.3 (q, 4H, CH ₂ Pentyne); 3.1 (s, 6H, Pentyne); 1.2 (t, 6H, CH ₂ CH ₃ Pentyne). | | | | 4 | 7.5-7.1 (m, 20H, Ph); 4.7 (m, 2H, CH ₂ dppm); 3.6 (q, 4H, CH ₂ Pentyne); 3.0 (s, 6H, CH ₂ CH ₃ Pentyne); 1.2 (t, 6H, CH ₂ CH ₃ Pentyne) | | | | 3 | 7.5–7.1 (m, 20H, Ph); 3.4 (q, 4H, CH ₂ Pentyne); 3.2 (s, 6H, <u>CH₃ Pentyne</u>); 2.7–2.5 (t, 2H, 2H dpp); 2.7–2.5 (2t, 4H, dppe); 1.1 (t, 6H, CH ₂ <u>CH₃ Pentyne</u>). | | | | 6 | 7.4–7.2 (m, 20H, Ph); 3.4 (q, 4H, CH ₂ Pentyne); 3.1 (s, 6H, <u>CH</u> ₃ Pentyne); 2.6 (t, 2H, CH ₂ CH ₂ -CH ₂ dppp); 2.4 (2t, 4H, CH ₂ CH ₂ CH ₂ dppp); 1.2 (t, 6H, CH ₂ CH ₃ Pentyne). | | | | 7 | -7.6-7.2 (m, 20H, Ph); 3.5 (q, 4H, CH ₂ Pentyne); 3.2 (s, 6H, CH ₃ Pentyne); 2.4 (m, 4H, dppb); 2.1 (m, 4H, dppb); 1.3 (t, 6H, CH ₂ CH ₃ Pentyne). | | | | . 8 | 7.6–7.2 (m, 20H, Ph); 3.6 (q, 4H, CH ₂ Pentyne); 3.3 (s, 6H, CH ₃ Pentyne); 2.8 (m, 2H, dpppe); 2.6 (m, 4H, dpppe); 2.3 (m, 4H, dppe); 1.5 (t, 6H, CH ₂ CH ₃ Pentyne). | | | ^aSpectra recorded in CDCl₃ (25°C) and referenced to SiMe₄; s = singlet; br = broad; d = doublet; m = multiplet; t = triplet; q = quarter. TABLE-4 13C NMR DATA^a (δ) FOR SELECTED CHLOROCARBONYL 2-PENTYNE TUNGSTEN COMPLEXES | Complex No. | ¹³ C NMR (δ) PPm | |-------------|---| | 1 | 9.7 (s, Me, CN); 12.8 (S, CH_2CH_3 , Pentyne); 20.30 (s, CH_3C_2) Pentyne; 27.95; 28.30 (s, CH_2CH_3 Pentyne); 130.45 (s, $C = N$); 163.46, 167.50 (s, $C = C$); 198.28 (s, $C = O$) | | 2 | 12.93 (S, CH ₃ Pentyne); 28.63 (s, CH ₂ Pentyne); 25.72 (s, CH ₃ CH ₂); 123.53, 124.17, 129.30 (s, Ph); 163.20, 165.65 (s, C \equiv C); 195.30 (s, C \equiv O) | | 3 | 13.25 (s, CH ₃ Pentyne); 27.25 (s, CH ₂ Pentyne); 26.37 (s, CH ₃ CH ₂); 122.67, 123.18, 123.60 (S, Ph); 148.96 (s, C \rightleftharpoons N); 162.50, 166.26 (s, C \rightleftharpoons C); 195.80 (s, C \rightleftharpoons C) | ^aSpectra recorded in CDCl₃ (25°C) and referenced to SiMe₄; s = Singlet. In view of the similar IR, 1H and ^{13}C -NMR spectral properties of the dichloro complex 1 to the related diiodo alkyne complexes $[WI_2(CO)(NCR)(R^1C_2R^1)_2]$ (R = Me, R 1 = Me, Ph 2 ; R = But, R 1 = Me 21 ; R = Me, R 1 = Ph 22), which have all been crystallographically characterized. It is very likely that the structure of 1 will be very similar as shown in Fig. 1. Fig. 1. Proposed structure of [WCl₂(CO)(NCMe)(η^2 -EtC₂Me)] (1) The room temperature $^{13}\text{C-NMR}$ spectrum (CDCl₃) for complex 1 (Table-4) has alkyne contact carbon resonances at $\delta=162.57$ and 167.30 ppm, which from correlation of Templeton and Ward²³ suggests that the two 3-hexyne ligands are donating a total of six electrons to the tungsten, which also enables complex 1 to obey the effective atomic number rule. From previous paper have been prepared many complexes starting from complex [WCl₂(CO)(NCMe)(η^2 -EtC₂Et)₂] with both neutral and anionic donor ligands. These results are summarized in Scheme-1. This paper describes the reactions of complex, $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (1) with monodentate such as PPh₃ and NPh₃ and bidentate ligands, such as Ph₂P(CH₂)_nPPh₂. Reaction of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (1) with one equivalent of PPh₃ and NPh₃ (23): Reaction of equimolar amounts of 1 and PPh₃ and NPh₃ in CH₂Cl₂ at room temperature gives the acetonitrile exchanged products. $[WCl_2(CO)(PPh_3 \text{ or } NPh_3) \ (\eta^2-EtC_2Me)_2]$ (2 or 3). - (ii) $L_1 = 2PPh_2$, $2L^{Mo}$, $2L^{W}$; $L_2 = Ph_2P(CH_2)_nPPh_2$ (n = 1, 3, 4 and 6); and cis-Ph₂PCH = CHPPh₂. - (iii) $2P(OR)_3$; (R = Et, ${}^{i}Pr$). - (iv) = bipy. - (v) $NaS_2CNR_2 \cdot 3H_2$ (R = Me, Et). #### Scheme 1. Complex (2) is more stable than (1) but less than (3). Complex (3) more soluble than complex (2). All two complexes 2 and 3 decompose very quickly when exposed to air in solution, and are also air-sensitive in the solid state, but can be stored under dinitrogen for several weeks. Complex 2 has a single carbonyl band in its IR spectrum at 2067 cm⁻¹ and 2075 cm⁻¹ for complex 3 (Table-2) in a similar position to 1 and would be expected to have a similar structure as the acetonitrile complex shown in Fig. 1. Also the room temperature 13 C-NMR spectrum (CDCl₃) of the most soluble complex in this series, [WCl₂(CO)(PPh₃ or NPh₃)(η^2 -EtC₂Me)₂] (2, 3), shows alkyne contact carbon resonances at δ = 169.62 and 163.43 ppm for complex 2 and δ = 166.73 and 161.20 ppm for complex 3, which again indicates²³ that the two 2-pentyne ligands are donating a total of six electrons to the metal in this complex, which enables the complexes to obey the effective atomic number rule. Reaction of $[WCl_2(CO)(NCMe)(\eta^2-EtC_2Me)_2]$ (1) with one equivalent of bidentate of $(Ph_2P(CH_2)_nPPh_2)$ n=(1-5): Treatment of 1 with $Ph_2P(CH_2)_nPPh_2$ (n=1-5) in CH_2Cl_2 at room temperature eventually gave the mono (2-Pentyne) complexes $[WCl_2(CO)(Ph_2P(CH_2)_nPPh_2)(\eta^2-EtC_2Me)]$ (4-8). All the new complexes have been characterized in the normal manner (Table-5). These bis(phosphine) complexes are more stable than 1-3, and can be stored for several weeks under a nitrogen atmosphere, and they are also stable in air in the solid state for 5 h. The complexes 4-8 are much less soluble in chlorinated solvents such as CH_2Cl_2 and $CHCl_3$ compared to 1-3. ^{31}P NMR DATA 3 (8) FOR SELECTED CHLOROCARBONYL 2-PENTYNE TUNGSTEN TABLE-5 · COMPLEXES | Co | implex No. | , | 31 p. n. r | | |----|------------|-----------------------------|---|--| | | 2 | -26.73 (s, PPh ₃ | ³¹ P NMR (δ) ppm | | | | 4 | | (d, J _{P-P} = 41.72, H ₂ 2P, of dppm) | | | | 5 | -19.14, -18.32 | (d, $J_{P-P} = 53.23$, H_2 2P, of dppm) | | | | 6 | -17.24, 16.65 (d | $J_{P-P} = 59.63, P_{P-P} = 59.63, 2P, of dppp)$ | | | | 7 | -14.26, -13.95 (| $(d, J_{P-P} = 62.53, 2P, of dppb)$ | | | _ | 8 | -10.63, -10.45 (| d , $J_{P-P} = 67.64$, H_2 2P, of dppe) | | ^aSpectra recorded in CDCl₃ (25°C) and referenced to 85% H_3PO_4 (s, singlet, d, doublet). The bidentate phosphine ligand complexes [WCl₂(CO)(Ph₂P(CH₂)_nPPh₂)(η²-EtC₂Me)] (n = 1-5) (4-8), which has been structurally characterized for n = 3. In view of the similar spectroscopic properties of $[WX_2(CO)\{Ph_2P(CH_2)_3PPh_2\}(\eta^2-\eta^2)]$ EtC₂Et)] {X = C1, $v(CO) = 1944 \text{ cm}^{-1}$; $X = I^{20}$, $v(CO) = 1942 \text{ cm}^{-1}$ }; $^{13}P\text{-NMR}$ for X = C1, $\delta = -18.13$ and -17.62 ppm, for $X = I^{20}$, $\delta = -23.73$ and -36.21 ppm), it is likely that they will have a similar structure as shown in Fig. 2. Fig. 2. Proposed structure of [WCl₂(CO){Ph₂P(CH₂)₃PPh₂}(η^2 -EtC₂Me)] (6). # ACKNOWLEDGEMENTS Many thanks to all technicians at Chemistry Department, K.A.A. University, Jeddah, Saudi Arabia. ## REFERENCES - 1. E.M. Armstrong, P.K. Baker and S.G. Fraser, J. Chem. Res., 52 (1988); J. Chem. Res. (M), - 2. E.M. Armstrong, P.K. Baker and M.G.B. Drew, Organometallics, 7, 319 (1988). - 3. P.K. Baker, M.G.B. Drew, S. Edge and S.D. Ridyard, J. Organomet. Chem., 409, 207 (1991). - 4. P.K. Baker, E.M. Armstrong and M.G.B. Drew, Inorg. Chem., 27, 2287 (1988). - 5. E.M. Armstrong, P.K. Baker, M.E. Harman and M.B. Hursthouse, J. Chem. Soc. Dalton - 6. P.K. Baker, E.M. Armstrong and M.G.B. Drew, Inorg. Chem., 28, 2406 (1989). - 7. E.M. Armstrong, P.K. Baker, K.R. Flower and M.G.B. Drew, J. Chem. Soc. Dalton Trans., - 8. P.K. Baker, Adv. Organomet. Chem., 40, 45 (1996) and references cited therein. - 9. ——, Chem. Soc. Rev., 27, 125 (1998) and references cited therein. - 10. P.K. Baker, D.J. Muldoon, A.J. Lavery and A. Shawcroos, Polyhedron, 13, 2915 (1994). - 11. P.K. Baker, A. Bury and K.R. Flower, Polyhedron, 8, 2587 (1989). - 12. P.K. Baker, M.G.B. Drew, M.M. Meehan, H.K. Patel and A. White, J. Chem. Res. (S), 379 - 13. P.B. Winston, S.J.N. Burgmayer and J.L. Templeton, Organometallics, 5, 1707 (1986). - 14. B.J. Brisdon, A.G.W. Hodson, M.F. Mahon, K.C. Molloy and R.A. Walton, Inorg. Chem., - 15. G.R. Clark, A.J. Nielson, A.D. Rae and C.E.F. Rickard, J. Chem. Soc. Dalton Trans., 1783 - 16. A. Mayr, C.M. Bastos, J. Am. Chem. Soc., 112, 7797 (1990). - 17. A. Mayr, C.M. Bastos, R.T. Chang, J.X. Haberman, K.S. Robinson and D.A. Belle-Oudry, - 18. M. Al-Jahdali, P.K. Baker, A.J. Lavery, M.M. Meehan and D.J. Muldoon, J. Mol. Catal., - 19. M. Al-Jahdali and P.K. Baker, J. Organomet. Chem., 628, 91 (2001). - 20. M. Al-Jahdali, P.K. Baker and M.G.B. Drew, Z. Naturforsch, 54B, 171 (1999). - 21. P.K. Baker, M.E. Harman, M.B. Hursthouse, A.J. Lavery, K.M.A. Malik, D.J. Muldoon and A. Shawcross, J. Organomet. Chem., 484, 189 (1994). - 22. M.G.B. Drew, P.K. Baker, D.J. Muldoon, A.J. Lavery and A. Shawcross, Gazz. Chim. Ital., - 23. J.L. Templeton and B.C. Ward, J. Am. Chem. Soc., 102, 3288 (1980). (Received: 20 September 2003; Accepted: 23 December 2003) AJC-3316 # 13th INTERNATIONAL SYMPOSIUM ON SUPRAMOLECULAR **CHEMISTRY** INDIANA, USA JULY 25-30, 2004 Contact: http://www.issc-xiii.org/ # TETRAPYRROLES, CHEMISTRY AND BIOLOGY OF (GORDON RESEARCH CONFERENCE) NEWPORT, RI, USA JULY 25-30, 2004 Contact: http://www.grc.uri.edu/04sched.htm